Equivalence of Distance-based and Rkhs-based Statistics in Hypothesis Testing by Dino Sejdinovic, Bharath Sriperumbudur,

نویسندگان

  • ARTHUR GRETTON
  • KENJI FUKUMIZU
چکیده

We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, maximum mean discrepancies (MMD), that is, distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. In the case where the energy distance is computed with a semimetric of negative type, a positive definite kernel, termed distance kernel, may be defined such that the MMD corresponds exactly to the energy distance. Conversely, for any positive definite kernel, we can interpret the MMD as energy distance with respect to some negative-type semimetric. This equivalence readily extends to distance covariance using kernels on the product space. We determine the class of probability distributions for which the test statistics are consistent against all alternatives. Finally, we investigate the performance of the family of distance kernels in two-sample and independence tests: we show in particular that the energy distance most commonly employed in statistics is just one member of a parametric family of kernels, and that other choices from this family can yield more powerful tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of Distance-based and Rkhs-based Statistics in Hypothesis Testing by Dino Sejdinovic,

We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, maximum mean discrepancies (MMD), that is, distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. In the ...

متن کامل

Equivalence of distance-based and RKHS-based statistics in hypothesis testing

We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, Maximum Mean Discrepancies (MMD), i.e., distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. In the cas...

متن کامل

Hypothesis testing using pairwise distances and associated kernels

We provide a unifying framework linking two classes of statistics used in two-sample and independence testing: on the one hand, the energy distances and distance covariances from the statistics literature; on the other, distances between embeddings of distributions to reproducing kernel Hilbert spaces (RKHS), as established in machine learning. The equivalence holds when energy distances are co...

متن کامل

Optimal kernel choice for large-scale two-sample tests

Given samples from distributions p and q, a two-sample test determines whether to reject the null hypothesis that p = q, based on the value of a test statistic measuring the distance between the samples. One choice of test statistic is the maximum mean discrepancy (MMD), which is a distance between embeddings of the probability distributions in a reproducing kernel Hilbert space. The kernel use...

متن کامل

Hilbert Space Embeddings and Metrics on Probability Measures

A Hilbert space embedding for probability measures has recently been proposed, with applications including dimensionality reduction, homogeneity testing, and independence testing. This embedding represents any probability measure as a mean element in a reproducing kernel Hilbert space (RKHS). A pseudometric on the space of probability measures can be defined as the distance between distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013